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Enhance Ambiguous Community Structure via
Multi-strategy Community Related Link

Prediction Method with Evolutionary Process
Qiming Yang, Wei Wei, Ruizhi Zhang, Bowen Pang, and Xiangnan Feng

Abstract—Most real-world networks suffer from incompleteness or incorrectness, which is an inherent attribute to real-world datasets.
As a consequence, those downstream machine learning tasks in complex network like community detection methods may yield less
satisfactory results, i.e., a proper preprocessing measure is required here. To address this issue, in this paper, we design a new
community attribute based link prediction strategy HAP and propose a two-step community enhancement algorithm with automatic
evolution process based on HAP. This paper aims at providing a community enhancement measure through adding links to clarify
ambiguous community structures. The HAP method takes the neighbourhood uncertainty and Shannon entropy to identify boundary
nodes, and establishes links by considering the nodes’ community attributes and community size at the same time. The experimental
results on twelve real-world datasets with ground truth community indicate that the proposed link prediction method outperforms other
baseline methods and the enhancement of community follows the expected evolution process.

Index Terms—Complex network, community enhancement, link prediction, community detection, Shannon entropy.
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1 INTRODUCTION

OWING to the fact that a great deal of real world data
could be expressed in complex network fashion [1],

complex network analysis attracts more and more attention
in many scientific disciplines. There are various approaches
to unveil the underlying information behind networks.
Among these studies, community detection has been con-
sidered as one of the most vital topics [2], [3], [4].

The network community is defined as a group of nodes
which are densely connected to each other, while sparsely
connected to the rest nodes [5]. In many real-world cases
community structure appears frequently. Social networks
are paradigmatic examples of graphs with communities,
since people have the tendency to form groups with similar
interest or ideology [6]. In biological bodies, community
structure in protein interaction networks could represent a
group of proteins with similar functions [7].

Many community detection methods have been pro-
posed to approach the problem. According to the work
by Fortunato et al. [8], community detection methods can
be roughly divided into five categories. The first category

• Q. Yang, R. Zhang and B. Pang are with the School of Mathematical Sci-
ences, Beihang University, Beijing, China, and also with Key Laboratory
of Mathematics Informatics Behavioral Semantics, Ministry of Education,
China. E-mail: {asdyqm, ruizhiz, pangbw}@buaa.edu.cn

• W. Wei is with the School of Mathematical Sciences, Beihang University,
Beijing, China, also with Key Laboratory of Mathematics Informatics
Behavioral Semantics, Ministry of Education, China, also with Institute
of Artificial Intelligence, Beihang University, Beijing, China, and also
with Peng Cheng Laboratory, Shenzhen, Guangdong, China. E-mail:
weiw@buaa.edu.cn

• X. Feng is with the Center for Humans and Machines, Max Planck
Institute for Human Development, Lentzeallee 94, Berlin, Germany.
Email: fengxiangnan@gmail.com

• Corresponding author: Wei Wei

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be
accessible.

contains the traditional graph partitioning methods like
Kernighan-Lin algorithm [9] and it’s extended version by
Suaris et al. [10]. The second category adopts the hierarchical
clustering, represented by the GN algorithm [6] and the
FN algorithm [11]. The third category is the modularity
based methods, which convert the clustering process into
optimising modularity measures [5], [12], [13]. The fourth
one contains the spectral clustering algorithms since the
eigenvectors of network Laplacian matrices have several
desirable properties related to community structure [14],
[15], [16]. The last category is the dynamic methods, in
which the spin models [17] and random walks [18] are often
used.

However, most real-world datasets are severely incom-
plete [8], e.g., in online social networks like Facebook (cur-
rently renamed as Meta), Twitter and Sina, only part of
global social information could be collected; in gene inter-
action networks, links among genes are usually measured
by costly experiments. The prevalent imperfections on real-
world network datasets might lead to incorrect community
detection outcomes, so community enhancement methods
are critical.

Researches have been conducted to fix impaired network
systems by predicting which node pairs are more likely to
establish links, also known as the link prediction methods
[19], [20], [21], [22], [23], [24], [25]. However, to the best
of our knowledge, researches on the topic of community
enhancement by link prediction have been rarely discussed.
Link predcition could be regarded as a data preprocssing
procedure, which has played a key role in the practice of
machine learning models [26], [27]. Therefore, it is natural
to assume that the link prediction methods could have
significant function and play a major role in community
enhancement task.

Moreover, there are three main drawbacks in existing

ar
X

iv
:2

20
4.

13
30

1v
1 

 [
cs

.S
I]

  2
8 

A
pr

 2
02

2



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 2

Evolve
Process

Inaccurate
Community

First 
Process

Second
Process

Correct
Result

Fig. 1. Diagram of proposed community enhancement measure. The first subfigure indicates the biased community detection result by algorithms
and the ground truth community is illustrated at the last subfigure. In the first process the community enhancement measure adjusts biased result
by adding inter-cluster links between inaccurately separated subcommunities. On the contrary, it enhances the correct result by adding intra-cluster
edges in the second process.

methods:

• Most methods do not take the evolution of network
structure into consideration. Most experiments are
conducted on single iteration or snapshot, such as
the EdgeBoost [28] algorithm, in which the long term
numerical stability is not discussed and only two-
hop neighbours are concerned.

• Most methods treat the community detection output
as the ground truth result. However, as aforemen-
tioned, due to the imperfection of real-world data,
clustering results are usually flawed, which means
adjustments are required in link prediction algo-
rithms to fix the results.

• Most methods only consider single strategy. How-
ever, applying different strategies simultaneously
might gain notable improvement. For example,
In graph representation learning, the IDGNN by
Leskovec et al. [29] successfully achieved expressive
power over 1-WL test [30] by applying two activation
functions at the same time.

In this paper, we design a harmony-based aggregation
preferred (HAP) link prediction method and propose a
community enhancement algorithm based on this strategy.
Our method comprises two distinct procedures. At the first
stage it will suture fractured communities into a complete
one, while the repaired communities will get enhanced at
stage two. The diagram of such procedure is presented in
figure 1. Experimental results on real-world datasets with
ground truth community information show that our method
achieves better performance than baseline methods in most
cases. The main contributions of our work are:

• We design a new link prediction strategy HAP for
community enhancement task. Our HAP method
does not require any prior knowledge about the
ground truth community such as the number of
communities.

• The HAP method could be applied as a plug-in
module in preprocessing procedure. It could be com-
plementary to arbitrary community detection algo-
rithms easily.

• Using Shannon Entropy, the definitions of consis-
tency and harmony perform practical potential in

community related problems or situations where
nodes have attributes and POIs.

The remainder of this paper is organized as follows.
Sect 2 presents related research work. Next, Sect 3 provides
formal definition of community detection problem and il-
lustrates the details of our method including the inductive
biases. Furthermore, Sect 4 shows the experimental results
and comparison with other baseline models. Finally Sect 5
gives the conclusion and future work.

2 RELATED WORK

Both link prediction and community detection are of great
significance in network analysis since both of them provide
network topology information from various perspectives.

For future references, three well-known community de-
tection algorithms are introduced here:

• Louvain [13]: It is a heuristic method based on
modularity optimization. This algorithm first assigns
different community labels to all nodes then opti-
mizes the modularity by aggregating those separate
communities.

• Infomap [31]: This method uses the probability flow
of random walks on a network as a proxy for in-
formation flows in the real system. It is an informa-
tion based approach capable in revealing community
structure in weighted and directed networks.

• Label Propagation (LPA) [18]: The major advantage
of this algorithm is that it has a near linear time
complexity. LPA method solely uses the network
structure as its information with each node adopting
the label that most of its neighbours currently have
at every iteration step.

Besides, several community detection algorithms were
proposed based on the altering of network topology
structure. Zhang et al. [32] designed an enhanced semi-
supervised learning framework for community detection,
which required prior knowledge about nodes. Yang et al.
[33] considered which prior information is critical for perfor-
mance improvement and proposed an active link selection
framework. Su et al. [34] proposed CSE method based on
central and boundary node identification for community
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enhancement, which successfully removed the limitation of
prior knowledge about nodes. Zhou et al. [35] proposed
genetic algorithm and similarity ensemble based commu-
nity enhancement methods to explore the robustness under
adversarial attack.

In link prediction oriented problem, the community de-
tecting results could be regarded as a global attribute to
provide extra information for link prediction algorithms.
Soundarajan and Hopcroft [36] rewrote the classic CN index
and RA index with community information and the exper-
imental results showed improvement. Rebaza and Lopes
[37] took intra-cluster and inter-cluster into consideration
and proposed WIC measure, which can be extended on
directed and asymmetric large-scale networks [38]. Ai et
al. [39] presented a link prediction method for personalized
recommendation circumstance based on complex network
modelling and community detection results.

Meanwhile, link prediction methods can be used to
enhance ambiguous community structure. Yang et al. [40]
proposed a conditional model for link prediction and a
discriminative model for content analysis. Chen et al. [41]
tested three traditional link prediction methods for enhanc-
ing community structure. Bacco et al. [42] proposed a gen-
erative model for multilayer network with interdependence
among its layers. Jiang et al. [43] designed a strategy based
on node centralities to establish clear boundaries among
communities. Burgess et al. [28] proposed EdgeBoost struc-
ture and explored the improvement of community detection
performance of three link prediction algorithms with six
community detection methods.

3 METHODS

In this section, we explain the proposed community en-
hancement algorithm in detail. The key component of the
proposed enhancement algorithm is the HAP link predic-
tion method, based on which the inductive biases and the

intuitions will be illustrated. Firstly we will formally define
the problem and all the symbols used in this paper.

3.1 Problem and Definitions
Every complex network system can be presented as an
ordered tuple G = (V,E), where V is the set of nodes and
E ⊆ V × V represents the edge set of network G [44]. In
this paper we mainly concern about undirected graph, i.e.,
∀vi, vj ∈ V and (vi, vj) ∈ E ⇒ (vj , vi) ∈ E.

In addition, for network with community attributes, each
node has its clustering label from ground truth knowledge
CG or by applying community detection algorithms CA. In
a network with K clusters, C = {C1, C2, · · · , CK} denotes
the set of clustering labels. We consider both CG and CA as
a function that satisfying CG, CA : V 7→ C , namely ∀v ∈ V ,
it has its ground truth community attribute CG(v) ∈ C and
algorithm result CA(v) ∈ C . Furthermore, CG(v) does not
necessarily equal to CA(v).

NCi
stands for the number of nodes with the community

attribute Ci. CM is the connection matrix satisfying CM ∈
ZK×K . We let CM(i, j) be the number of edges between
cluster Ci and Cj .

For future reference, the definition of revising edges is
illustrated here. Given the ground truth community CG

and algorithm’s output CA, edge e = (vi, vj) is a revis-
ing edges if CG(vi) = CG(vj) and CA(vi) 6= CA(vj). To
clarify, revising edges might not exist in some networks.
At the same time we provide the definition of reinforcing
edges: edge e = (vi, vj) is a reinforcing edge if and only if
CG(vi) = CG(vj) and CA(vi) = CA(vj).

3.2 Inductive Biases
It is worth noticing that in most cases, community detection
methods will yield a larger number of clusters on both real
world and synthesized networks.
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Fig. 2. Average number of clusters in 10 independent iterations. Comparing with the ground truth, LPA and Infomap community detection
methods clearly yields higher number of communities. On the other hand, Louvain algorithm tends to detect fewer communities than those two
aforementioned methods but is still biased in most cases except Eurosis dataset.
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(a) Ground Truth (b) Infomap Result

Fig. 3. An example of the Dolphin network indicating that community detection algorithms turn complete community into fragments. Compared with
the ground truth information, the larger community in dolphin network gets fractured by the Infomap community detection method.

Here we present the results of three community de-
tection algorithms on nine real-world network systems in
figure 2. Notice the difference in cluster numbers between
ground truth knowledge and clustering results. Except Lou-
vain method on Eurosis network, community detection
methods output larger number of communities than ground
truth. Especially in Cora OS dataset, the results of LPA and
Infomap are 25 times larger than the actual instance num-
ber. The experimental results of those community detection
methods on LFR benchmark graphs yields higher number
of community is referred to [28]. All real-world datasets
mentioned here will be formally introduced in section 4.

Furthermore, in most cases the emergence of extra clus-
ters comes from the fracture of complete ground truth
communities. For example, demonstrated in figure 3, the
larger ground truth community in dolphins network gets
fragmented into four smaller communities by the Infomap
method. If the link prediction method could make connec-
tions among different parts of fractured subcommunities,
community detection methods would achieve better perfor-
mance by recognising and merging those subcommunities
into a complete one.

If we could adjust the network topology structure by
connecting nonexistent revising edges, the community de-
tection algorithms would get a higher likelihood to recog-
nize the ground truth community of network.

Moreover, since the proposed method is designed to
make connections among fractured subcommunities, it has
the tendency to form links between small community and
large community. That is to say, if the size of community in
the complex network has great difference, the link predic-
tion method is risky to dissipate the small clusters.

In conclusion, the inductive biases in this paper are listed
as follow

• The outputs of community detection algorithms are
highly likely to be incorrect and contain more clus-
ters than actual case because detection methods tend
to split large community into smaller ones.

• The connecting of revising edges enhances the am-
biguous community structure, which could help the
downstream community detection algorithms pre-
form better.

• The sizes (number of nodes) of ground truth commu-
nities in a complex network are in similar scales.

3.3 Algorithm Skeleton
It is commonly accepted that ambiguous community struc-
ture is challenging for community detection studies due to
the subtle difference between inter-edges and intra-edges
[34]. The leading thought of the HAP link prediction method
is to add links among fractured components of a complete
community, thus turning misunderstood inter-edges into
affirmative intra-edges.

As a community attribute related unsupervised link
prediction method, the HAP method requires a community
detection algorithm to trigger the community enhancement
procedure since no prior knowledge about the ground truth
community is available.

To be specific, the proposed community structure en-
hancement method contains three main iterating processes:
1) community detection; 2) central and boundary nodes
recognition; 3) adding links. The community detection pro-
cess will not be discussed here since it is given by the users.

3.4 Central Nodes Recognition
In order to achieve the goal of community enhancement,
the HAP link prediction method will recognise central and
boundary nodes while simultaneously adds links to the
network. The proposed community enhancement method
has an evolutionary process which will be explained in short
notice.

When detecting the central and boundary nodes, most
methods use centrality measure to define whether nodes are
on the edge of community or not [34] [35]. Such centrality
measure can be defined through average distance between
intra-community nodes, which can be regarded as geometric
distance centrality. Other methods, such as calculating the
fraction of neighbour nodes that have the same community
attributes, could be regarded as the probability of one-step
random walk ending within the community.

These two measures are both successful in identifying
boundary nodes. However, distance based centrality mea-
sure will bring unwanted calculation complexity. Mean-
while, nodes with large degree have a higher likelihood to
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yield smaller average distance. Also the definition of bound-
ary node usually does not consider the node’s neighbours
with different community attributes.

The fraction of connection based method has less com-
putation complexity and takes the neighbour nodes’ com-
munity attributes into consideration. However, the linear
expression in fraction of connection might not utilize the
neighbourhood information fully since communities are
usually treated without difference.

(a) (b)

Fig. 4. Diagram of node with its neighbourhood information. The diversity
of nodes’ colour indicates they belong to different community

Take figure 4a as an example. In [34], the centrality score
of a node is defined as:

CSu =
|N(u) ∩NLS |
|N(u)|

, (1)

where the numerator stands for the number of nodes with
the same community attribute while the denominator is the
degree of node u. So we can easily calculate that for the
central node in figure 4a its centrality score equals to 3/7.

If we alter the neighbour nodes’ community attribute,
the shortage of such centrality measure will be exposed.
As shown in figure 4b. It can be seen that in figure 4b, the
centrality score of the central blue node remains 3/7.

In other word, this centrality function fails to express
the difference between figure 4a and 4b. Thus we should
take the neighbour nodes’ community attributes into deeper
consideration.

There is no doubt that the most useful and easily accessi-
ble information for the centrality score is the neighbourhood
of nodes. Furthermore, for node x, all its neighbour nodes
Γ(x) should contain the community attribute information.
Here we define the neighbourhood community enumeration
(NCE) of node x, given the community mapping function
CG:

NCEG(x) =< CG(i)|i ∈ Γ(x) > . (2)

Such as in figure 4a, the central node’s NCE is <
1, 1, 1, 2, 2, 3, 3 > (1, 2 and 3 stand for blue, green and red
community respectively). In figure 4b, the central node’s
NCE is < 1, 1, 1, 2, 2, 2, 2 >. We apply entropy [45] to
assess the mapping distribution in NCE. If a node has in-
tricate neighbourhood information, namely a large entropy
value, then it can be treated as the boundary node of a
community. Here we use the Shannon Entropy to quantify
the uncertainty of the NCE. For a node x, given the commu-
nity mapping function CG, its boundary score BS(x) can be
calculated as follow:

BS(x) =
ShannonEntropy(NCEG(x))

log(|Γ(x)|)
. (3)

If |Γ(x)| = 1, its boundary score is set as 0. It can be
easily proven that the maximum value of the numerator
is log(|Γ(x)|), thus the BS value is always among 0 and
1. Higher BS score of a node indicates its neighbourhood
community attributes are more various.

For example, the central node in figure 4a has a bound-
ary score 0.5545 while in figure 4b the boundary score
equals to 0.3509. It is more precise since in figure 4a, the
central node is on the overlapping section of three commu-
nities while in figure 4b it stands between two communities.

Algorithm 1: Boundary Score Calculation

Input: Graph G = (V,E), Community Mapping
Function CM and node x.

Output: Boundary Score BS(x).
NCE ←− ∅
Counter ←− ∅
for v ∈ V do

if (x, v) ∈ E then
NCE ←− NCE ∪ CM (v)
Counter[CM (v)] + = 1

Counter ←− Normalize(Counter)
BS(x)←− 0
for key ∈ Counter do

p←− Counter[key]
BS(x)←− BS(x)− p ∗ log2(p)

return BS(x)/log2(len(NCE))

With the help of Boundary Score, the definition of consis-
tency score (CS) is defined as:

CS(x) = 1−BS(x). (4)

The maximum value of CS of a node will be achieved
when there is only one type of community in its neighbour-
hood. Larger CS value of a node suggests its neighbours’
community attributes perform less uncertainty. This con-
sistency measure can be viewed as a node centrality index
evaluating the uncertainty of its neighbourhood clustering
information.

3.5 Link Connection
3.5.1 Harmony Similarity Measure
As discussed before, due to the imperfection of community
detection algorithms, there is no reason that link prediction
methods should take the clustering results as the ground
truth. Experimental results in section 4 will prove that the
usage of community attributes with insufficient considera-
tion might damage the community enhancement.

Consider the RA index [46]. The intuition behind this
method is the resource allocation process on networks. The
similarity function is formulated as:

s(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

|Γ(z)|
(5)

It can be interpreted as a way to quantify the information
transmission efficiency, which is under the assumption that
intermediate nodes between x and y will equally spread
information towards their own neighbours. So equation 5
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can be regarded as a measure of amount of information flow
coming out of node x and received by node y.

Consider the information spreading with community
attributes. Instead of spreading to neighbours uniformly,
the information flow might be measured inaccurately by the
uncertainty of intermediate nodes’ neighbourhood informa-
tion. That is to say, in this case, the information flow is not
point-to-point but in the community-to-community pattern.

In other words, creating links between nodes that have
higher consistent common neighbours is equivalent to cre-
ating links that are more likely to have the same community
attribute. Here we define the harmony(HM) value to eval-
uate this consistency between node x, y, namely:

HM(x, y) =
1

|Γ(x) ∩ Γ(y)|
∑

z∈Γ(x)∩Γ(y)

CS(z) (6)

where CS is the consistency measure. Through equation 6, it
is clearly seen that the HM index is a second order similarity
measure via entropy.

The HM score of two nodes is higher if their common
neighbours have larger average CS value. Following the
definition of consistency, a node with higher consistency
value indicates that it is more likely to be a central node
of a community. Then nodes x, y will yield a large har-
mony value if they share a neighbourhood of central nodes,
suggesting that x and y are more likely to share the same
community.

Algorithm 2: Harmony Score Calculation

Input: Graph G = (V,E), Community Mapping
Function CM and nodes x, y.

Output: Harmony Score HS(x, y).
CommonNeighbour(CN)←− ∅
Counter ←− 0
for v ∈ V do

if (x, v) ∈ E and (y, v) ∈ E then
CN ←− CN ∪ v
Counter + = 1

HS(x, y)←− 0
for v ∈ CN do

HS(x, y) + = (1−BoundaryScore(v))

return HS(x, y)/Counter

3.5.2 Evolution Transformation
According to equation 6, nodes in the same community
are expected to have higher HM score. It is a desirable
characteristic, but it might also accelerate the enhancement
of fractured community at the very beginning if solely based
on the harmony index. Therefore this enhancement ability
of link prediction is still insufficient. We need to control
the evolutionary process by community size to determine
whether it is time to adding reinforcing edges or not.

Firstly we explain the two stages of HAP method in
detail. As illustrated in figure 1, the enhancement procedure
can be separated into two processes. The first process is
to add links between fractured communities, which adds
revising edges to mend broken communities. After that, the
enhancement measure tends to strengthen those relatively

large-scale communities by adding reinforcing edges to rein-
force the outputs of community detection algorithms.

In order to automatically transform the enhancement
procedure, the variables in such process need to be care-
fully designed. Following the demonstration of figure 1,
the minimum community size escalates. It can be seen
that in figure 3, comparing with the connective frequency
between different community in the ground truth result,
the connection among fractured components from Infomap
are much more frequent. The merging of small communities
should have higher priority at the beginning. For two nodes
x, y with different community labels, HAP method tends to
add link between them if the communities they belong to
are relatively frequent to connect with each other.

Here we define Community Size Attribute (CSA):

CSA(x, y) =


CM(Cx,Cy)

min{CM(Cx,Cx),CM(Cy,Cy)} , Cx 6= Cy√
NCx

maxi NCi
, Cx = Cy

(7)

CM is the connection matrix. Equation 7 calculates the
ratio between inter edges and the intra edges for smaller
communities when Cx 6= Cy .

Algorithm 3: Community Size Attribute

Input: Graph G = (V,E), Community Mapping
Function CM and node x, y.

Output: CSA value CSA(x, y).
Cx ←− CM (x)
Cy ←− CM (y)
if Cx = Cy then

CM ← ZeroMatrix
for e = (i, j) ∈ E do

CM [CM (i), CM (j)] + = 1

if CM [Cx, Cx] ≤ CM [Cy, Cy] then
CSA = CM [Cx, Cy]/CM [Cx, Cx]

if CM [Cx, Cx] > CM [Cy, Cy] then
CSA = CM [Cx, Cy]/CM [Cy, Cy]

if Cx 6= Cy then
SizeOfCommunity(SoC)←− ZeroArray
for v ∈ V do

SoC[CM (v)] + = 1

Scale←− LargestValue(SoC)

CSA =
√
Soc[Cx]/Scale

return CSA

As aforementioned, when Cx = Cy we do not want
to enhance the community when it is relatively small,
since reinforcing small communities too early might cause
improper community detection result. Empirically we set
CSA =

√
NCx/maxi{NCi} when Cx = Cy , which per-

forms satisfactorily in experiments. The CSA value will
yield higher value when the size of community gets larger
during the revising process.

Generally, the CSA index can be re-garded as the indi-
cator of connection possibility between communities since
it utilizes the community attribute of nodes. On the other
hand, the HM index explicitly points out the detail about
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which pair of nodes should build connection. Combing
those two indexes together could achieve the community
enhancement measure with desired automatic transform of
procedure.

Following this, combine equation6 and 7, the similarity
function of HAP method is listed below:

HAP (x, y) = CSA(x, y) ·HM(x, y)

Algorithm 4: HAP Method

Input: Graph G = (V,E), Community Mapping
Function CM and Number of Adding L.

Output: New Graph G = (V,E′).
NonExistEdges(NEE)←− ∅
for i ∈ V do

for j ∈ V do
if (i, j) /∈ E then

CEE ←− CEE ∪ (i, j)

HAP Scores←− ∅
for e = (i, j) ∈ NEE do

HS ←− Harmony Score Calculation(G,CM , i, j)
CSA←− Community Size Attribute(G,CM , i, j)
HAP ← HS · CSA
HAP Scores←− HAP Scores ∪ (HAP, e)

HAP Scores←− Descend Order(HAP Scores)
Counter ←− 0
E′ ←− E ∪ Top L Edges In(HAP Scores)
return G = (V,E′)

With all the preparation work, the community enhance-
ment process is demonstrated in algorithm 5. In the experi-
mental section, we will replace the HAP method with other
link prediction methods to verify its validity.

Algorithm 5: Community Enhancement Method

Input: Graph G = (V,E), Community Detection
Method CDM , Number of Adding L,
Number of Interation N .

Output: Community Mapping Function CM .
Gold ←− G
Cold ←− CDM(Gold)
for n ∈ 1, ..., N do

Gnew ←−HAP Method(Gold, Cold, L)
Cnew ←− CDM(Gnew)
Gold ←− Gnew

Cold ←− Cnew

return Cnew

4 EXPERIMENTS RESULTS AND ANALYSIS

4.1 Datasets
Twelve networks are tested in experimental process, includ-
ing a network consisting of 62 dolphins in a community
living off Doubtful Sound, New Zealand (Dolphins, for
short) [47], network of friendships among 34 members of
Zachary’s karate club (Karate, for short) [48], books about
US politics sold by the online bookseller Amazon.com in

2004 (Polbooks, for short) [49], a mapping interactions be-
tween Science in Society actors on the Web of 12 European
countries (Eurosis, for short), an online hyperlinks network
between weblogs on US politics (Polblogs, for short) [50],
a network of the relationship between publication and the
corresponding word from a dictionary (Cora, for short) [51].
A series of citation network on different sub domains, listed
as Cora Artificial Intelligence( Cora AI, for short), Cora Hu-
man Computer Interaction (Cora HCI, for short) and Cora
Operating Systems (Cora OS, for short) [52], three subsets
of the 20 newsgroups dataset which comprise around 18000
newsgroups posts on 20 topics (News 1, News 2, News 3,
for short) [53].1

Details of the twelve datasets are listed in table 1. The
column of Transitivity indicates the fraction of close trian-
gles in the network system, which is an indicator of connec-
tivity. NC stands for the ground truth number of clusters
in the network. To demonstrate the community structure,
the index of Intra is defined as the ratio of edges within
communities. L is the hyperparameter of edge increment for
each iteration, which is approximately proportional to the
number of edges in the network system.

TABLE 1
Information of Twelve Real-world Networks

Network #Nodes #Edges Transitivity NC Intra L
Dolphins 62 159 0.30878 2 0.96226 10
Karate 34 78 0.25568 2 0.87179 10
Polbooks 105 441 0.34840 3 0.84127 20
Eurosis 1272 6454 0.23478 13 0.82290 100
Polblogs 1222 16717 0.22596 2 0.90578 200
Cora 2458 5069 0.09003 7 0.80410 100
Cora AI 4633 12985 0.15621 11 0.82636 150
Cora HCI 1053 2350 0.17730 5 0.96213 50
Cora OS 2068 8645 0.13664 4 0.82852 120
News 1 398 3347 0.42667 2 0.93188 50
News 2 598 5041 0.36420 3 0.80401 100
News 3 595 4557 0.35152 3 0.85561 100

4.2 Baseline Methods and Evaluation Measures

4.2.1 Baseline Methods
The kernel of HAP method is the similarity paradigm link
prediction algorithm. In order to verify the performance of
proposed HAP method, it is compared with six other link
prediction methods, including JA [54], PA [55], CN [20], CN1
[36], RA [46] and RA1 [36].

• PA(Preferential Attachment): s(x, y) = |Γ(x)| ×
|Γ(y)|. It is solely based on degrees under the as-
sumption that higher degree nodes tend to connect
each other and independent with network’s topology
information.

• CN1(Adjusted Common Neighbour): Different from
CN, CN1 takes clustering information into consider-
ation. It gets a bonus point if the common neighbours
of nodes x and y belong to the same community with
them.

• RA1(Adjusted Resource Allocation): Same as CN1,
the numerator term in RA gets additional point for

1. All datasets are available on https://github.com/vlivashkin/community-
graphs
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common neighbours being in the same community
with nodes x and y.

The community detection algorithms concerned here are
Infomap, Louvain and Label-Propagation, all of which have
been discussed previously. All seven link prediction meth-
ods are aggregated with those three community detection
algorithms to get twenty-one combination, which are tested
on twelve real-world datasets. Further details will be pro-
vided in the following subsection.

4.2.2 Evaluation Measures
In order to quantify the quality of community detection
result, as well as measuring the improvement of graph
enhancement, the widely used Normalized Mutual Infor-
mation (NMI) evaluation methods will be introduced here:

NMI(X,Y ) =
MI(X,Y )√
H(X)×H(Y )

where MI [56] stands for Mutual Information score and
H is the Shannon Entropy function. If we take X as the
algorithm output and Y is the ground truth community
structure, value 1 means perfect correlation while 0 stands
for no mutual information. That is to say, higher NMI values
mean better community detection results.

In addition, the correction ability of link prediction
methods is another desirable characteristic. To quantify this

ability, the fraction of revising edges will be discussed here.
Furthermore, to express the automatic transition between
two stages, the dynamic about fraction of revising and
reinforcing edges will be demonstrated. Last but not least,
to test the generalization ability and numerical stability, the
difference between the original NMI value and the final
output NMI value will be compared.

Meanwhile, we illustrate the average fraction of revising
edges of all link prediction algorithms among three different
community detection methods. Since the damping factor√
NCx in equation 7 is clearly not suitable for all situations,

only part of real-world datasets about the dynamic between
two stages will be demonstrated.

4.3 Evaluation of NMI

In this section, we demonstrate the numerical experimental
results on twelve networks. Since the ground truth com-
munity structure behind those networks are all available,
we compare the algorithm output with the ground truth
by applying the NMI measure. The result of best NMI
performance of all link prediction methods among three
different community detection algorithms are demonstrated
in figure 5.

For each network, we independently apply the differ-
ent twenty-one combinations of link prediction methods
with community detection algorithms and repeat the link
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TABLE 2
NMI ranking of seven link prediction methods

Dolphins Karate Polbooks Eurosis Polblogs Cora Cora AI Cora HCI Cora OS News 1 News 2 News 3 Mean
JA 7 2 6 7 7 4 6 3 7 2 6 7 5.33
PA 6 7 7 4 5 5 7 7 6 7 4 3 5.67
CN 3 6 4 6 2 7 5 4 2 5 7 6 4.75

CN1 5 3 4 5 2 2 4 5 1 3 5 5 3.67
RA 2 5 3 1 6 6 3 6 5 6 3 2 3.67

RA1 4 4 2 2 2 3 2 2 4 4 2 4 3.25
HAP 1 1 1 3 1 1 1 1 3 1 1 1 1.33

adding and clustering for ten iterations as the community
enhancement measure. The results in figure 5 are the best
performance for each link prediction methods among three
different community detection algorithms. The correspond-
ing ranking is listed in table 2. As we can see in table
2, our proposed HAP link prediction method has leading
performance in 10 out of 12 networks, especially in the
dolphins network where it reaches the maximum value of
NMI.

Not limited to the best performance of NMI values, the
improvement on each real-world datasets are still signif-
icant. Since there remains uncertainty in the community
detection section, several link prediction methods might get
leading performance since they acquire better community
detection result at the beginning of community enhance-

ment process (demonstrated in algorithm 5). Here we pro-
vide such information in figure 6, where red part indicates
the final result is decreased while green part shows the
improvement between the initial partition result and the
terminal output after the final round of graph enhancement.

From figure 6 we could find out that our proposed meth-
ods have top-2 performance in most cases (11 out of 12). In
addition, our proposed HAP method achieves improvement
in performance on all datasets. The corresponding ranking
is demonstrated in table 3. Furthermore, comparing table
2 with table 3, we can verify our hypothesis such as the
main contribution for RA1 measure’s higher NMI values
originates in better initial partition result rather than its
community enhancing ability.

Furthermore, observing the average ranks of all baseline
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Fig. 6. Largest improvement for each combination, labels after || stand for best performance achieved by Louvain(∗), Infomap(#) and LPA(>). The
Louvain community detection on Eurosis dataset is also excluded.
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TABLE 3
Best NMI improvement ranking of seven link prediction methods

Dolphins Karate Polbooks Eurosis Polblogs Cora Cora AI Cora HCI Cora OS News 1 News 2 News 3 Mean
JA 6 2 4 7 7 4 6 6 4 2 5 7 5.00
PA 7 6 7 6 2 6 7 7 5 6 7 2 5.67
CN 3 7 6 3 6 7 5 3 3 4 4 5 4.67

CN1 5 4 5 2 5 5 4 5 2 3 6 1 3.92
RA 2 5 3 4 3 2 3 2 7 5 1 3 3.33
RA1 4 3 2 5 4 3 1 4 6 7 3 6 4.00
HAP 1 1 1 1 1 1 2 1 1 1 2 4 1.42

methods in table 2 and 3, we find that the RA family
(RA, RA1) generally performs better than the CN family
(CN, CN1). Considering the characteristics and intuitions
behind those link prediction methods, this finding might
indicate that the information flow paradigm (RA) might
be more appropriate than the neighbourhood overlapping
index (CN) in the scene of community enhancement in real-
world data.

4.4 Evaluation of Revising Edges
Taking a step further to explore the reason of such leading
performance by HAP method, we need to consider the
role of revising edges in the community enhancement task.
According to inductive biases, it is believed that the con-
nection of revising edges will deeply affect the community
detection methods and lead those algorithms to better NMI
performance. As shown in table 4, each value indicates the

average fraction of revising edges among three community
detection methods for the corresponding link prediction
method. For example, if the accumulating fraction of CN
index in complex network system on three community
detection methods are 6, 9 and 12, the corresponding value
in this table is (6 + 9 + 12)/3 = 9. The best value on each
network is highlighted.

As can be seen from table 4, the proposed algorithm
can achieve the best performance in all datasets with over-
whelmingly highest fraction of revising edges. Additionally,
comparing the CN and RA index with their community
attributes version CN1 and RA1, the experimental results
on revising fraction elucidate that improper consideration
of community attributes will bring damage upon the correc-
tion ability of enhancement measure.

Not only the revising edges, the reinforcing edges also
play an important role in mending fractured communities.

TABLE 4
Fraction of revising edges for all methods on 12 real world networks

Methods Dolphins Karate Polbooks Eurosis Polblogs Cora Cora AI Cora HCI Cora OS News 1 News 2 News 3
JA 6.33 9.00 5.67 3.60 1.58 5.87 4.47 6.00 7.43 1.67 4.10 6.47
PA 15.33 6.33 6.83 0.70 0.95 5.47 7.93 43.73 20.90 23.93 14.27 14.07
CN 18.67 7.33 0.00 0.35 0.05 3.47 1.56 4.60 9.30 2.93 5.43 13.43
CN1 4.33 4.00 0.00 0.00 0.00 0.13 0.07 0.20 1.10 0.00 0.00 0.33
RA 32.33 12.00 5.67 5.60 1.00 23.73 19.64 21.95 23.90 11.80 12.30 14.93
RA1 12.67 8.00 0.50 0.40 0.13 2.90 1.29 2.07 2.93 0.00 0.07 0.17
HAP 82.67 21.00 59.33 53.20 54.25 78.33 74.20 90.00 88.47 87.67 57.67 48.57
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of corresponding type of edges, the green vertical dash line unveils the auto transformation between two processes.
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(a) Stage 1 (b) Intermediate (c) Stage 2

Fig. 8. Three snapshots of the experimental procedure of Dolphin network, red line indicates the links that appended in corresponding round.
Subfigure 8a to subfigure 8b represents the first stage of graph enhancement, which makes connection between fractured components and turns
them into a complete community. While from subfigure 8b to subfigure 8c shows the reinforcing process to enhance the correct community detection
result.

Thus we design our HAP method with evolution process
to transform from adding revising edges to reinforcing
edges. The transformation has been successfully captured in
several datasets. Demonstrated in figure 7, it can be seen that
the link prediction method has the ability to automatically
transform from revising to reinforcing process. The illus-
tration of transformation about HAP method on Dolphin
network is presented in figure 8, where the evolutionary
process between two stages is clearly captured.

Last but not least, table 5 shows the sign of difference
between the original NMI value and the final output NMI
value. In this table, the improvement is labelled with the
sign + in red. It can be seen that our HAP method has the
greatest application stability and suits for 17 out of 20 cases.

5 CONCLUSION AND FUTURE WORK

In this paper we propose the HAP method to fill the void
of link prediction based network community enhancement
method. Combing the HM index and the CS index, it can
be treated as a iterative method which first determines
the connection in global perspective (community level)
and then focuses into the neighbourhood local information
(node level) at each iteration. It has desirable portability
and simplicity with low computation cost. Compared with
other baseline methods on real-world datasets, we find
that our proposed novel index has better performance in
most cases. Furthermore, the HAP method does not require
any prior knowledge about the distribution or number of
communities. Finally, thanks to the iteration paradigm, all
local link prediction approaches are no longer bounded by
the two hop distance.

There still remain some works that need to be further
studied. In this paper we only consider adding edges to
the network system, but the removal of existing edges
also needs to be concerned. And the square root term in
the similarity function of proposed method is an empirical
modification term which cannot suit all situations. In future
work, we will further explore the preprocessing ability

of HAP method in the circumstances where nodes have
additional attributes like the node classification tasks or the
graph classification tasks.

ACKNOWLEDGMENTS

This work was supported by the Research and Develop-
ment Program of China (Grant No. 2018AAA0101100), the
National Natural Science Foundation of China (Grant Nos.
62141605, 62050132), the Beijing Natural Science Foundation
(Grant Nos. 1192012, Z180005).

REFERENCES

[1] S. H. Strogatz, “Exploring complex networks,” nature, vol. 410, no.
6825, pp. 268–276, 2001.

[2] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou, and A. Y. Zomaya,
“Mobility-aware service composition in mobile communities,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 3, pp. 555–568, 2016.

[3] Z. Wang, D. Zhang, X. Zhou, D. Yang, Z. Yu, and Z. Yu, “Discover-
ing and profiling overlapping communities in location-based so-
cial networks,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44, no. 4, pp. 499–509, 2013.

[4] S. Qiao, N. Han, Y. Gao, R.-H. Li, J. Huang, H. Sun, and X. Wu,
“Dynamic community evolution analysis framework for large-
scale complex networks based on strong and weak events,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51,
no. 10, pp. 6229–6243, 2020.

[5] M. E. Newman, “Fast algorithm for detecting community structure
in networks,” Physical review E, vol. 69, no. 6, p. 066133, 2004.

[6] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proceedings of the national academy of
sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[7] A. C. Lewis, N. S. Jones, M. A. Porter, and C. M. Deane, “The
function of communities in protein interaction networks at multi-
ple scales,” BMC systems biology, vol. 4, no. 1, pp. 1–14, 2010.

[8] S. Fortunato, “Community detection in graphs,” Physics reports,
vol. 486, no. 3-5, pp. 75–174, 2010.

[9] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell system technical journal, vol. 49, no. 2,
pp. 291–307, 1970.

[10] P. R. Suaris and G. Kedem, “An algorithm for quadrisection and
its application to standard cell placement,” IEEE Transactions on
Circuits and Systems, vol. 35, no. 3, pp. 294–303, 1988.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 12

TABLE 5
Experimental result of 12 real-world datasets on twenty-one combinations of link prediction methods and community detection methods. Sings in

this table show the difference between original and final NMI values.

LP CD Dolphins Karate Polbooks Eurosis Polblogs Cora Cora AI Cora HCI Cora OS News 1 News 2 News 3

JA

Louvain - + - \ - + + + + - - -

Infomap - - - - - - - - + - + -

LPA - + - - - - - - - + + +

RA

Louvain - - - \ + - - - + + - +

Infomap - - - - + - + - + - + -

LPA - - - - - - - - - - - -

CN

Louvain + - - \ - - + - - + - +

Infomap + - - - - - - + - - + -

LPA + - - + - - + + + + + +

CN1

Louvain + - - \ - + + + - + - +

Infomap - - - - - + - + + - + -

LPA + = - + - - + + + + + +

RA

Louvain - - - \ - + + + + - + -

Infomap - - + + + + + + + + - +

LPA + - - + - + + + + + + +

RA1

Louvain - - + \ + - + - - + - -

Infomap + - + + + + + + + - + -

LPA + + - + - + + + + + + +

HAP

Louvain + + + \ + + + + + + + +

Infomap + + - - + + + + + + + +

LPA + + + + + + - + + + + +

[11] M. E. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Physical review E, vol. 69, no. 2, p.
026113, 2004.

[12] C.-H. Mu, J. Xie, Y. Liu, F. Chen, Y. Liu, and L.-C. Jiao, “Memetic
algorithm with simulated annealing strategy and tightness greedy
optimization for community detection in networks,” Applied Soft
Computing, vol. 34, pp. 485–501, 2015.

[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[14] W. E. Donath and A. J. Hoffman, “Lower bounds for the par-
titioning of graphs,” in Selected Papers Of Alan J Hoffman: With
Commentary. World Scientific, 2003, pp. 437–442.

[15] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[16] A. Mahmood and M. Small, “Subspace based network community
detection using sparse linear coding,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 28, no. 3, pp. 801–812, 2015.

[17] J. Reichardt and S. Bornholdt, “Detecting fuzzy community struc-
tures in complex networks with a potts model,” Physical review
letters, vol. 93, no. 21, p. 218701, 2004.

[18] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time al-
gorithm to detect community structures in large-scale networks,”
Physical review E, vol. 76, no. 3, p. 036106, 2007.
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